Where do we get our drinking water?
Our drinking water is obtained from ground and surface water sources. The surface water comes from the following area lakes: Benbrook, Eagle Mountain, Cedar Creek and Richland Chambers. The groundwater comes from the Trinity Aquifer. For more information on where we get our drinking water, please contact us at 817-788-7206.

All water may contain contaminants
When drinking water meets federal standards, there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Information about source water assessments
The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on the susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts for our system, you may contact the Director of Utilities at 817-788-7206.

For more information about your sources of water, please refer to the Source Water Assessment Report. The Texas Water Development Board for the time period January 1 to December 31, 2019, our system reported:

- Apparent Losses Normalized of 3.5b gallons per connection, per day. Real Losses Normalized as 0.45 gallons lost per connection, per day. The City of Hurst Infrastructure Leak Index (or LLI) was reported at 0.04 and our overall Total Loss percentage was 1.39%.
- If you have any questions about the water loss audit, please call the Director of Utilities at 817-788-7206.

Water IQ - Know Your Water
Water IQ is a public awareness program that educates Texans on the importance of water conservation. Research shows that the more Texans understand where their water comes from, the more likely they are to take an active role in conserving it. As Texans conserve our state’s water resources, they are helping ensure that the state has enough water now and in the future.

Special Notice
Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Public Participation Opportunity
The City of Hurst Water Utilities will conduct a community meeting to answer any questions you may have concerning your water.

July 16, 2020 – 6:00 P.M.
Hurst Service Center
2001 Precinct Line Road
Call 817-788-7200 for further information.
2019 Drinking Water Quality Report

These charts list all of the federally regulated or monitored contaminants that have been found in your drinking water for the 2019 calendar year. The U.S. EPA requires water systems to test up to 97 constituents.

PRIMARY WATER QUALITY CONSTITUENTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Contaminant</th>
<th>High Level</th>
<th>Level Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Barium</td>
<td>0.06</td>
<td>0.05 to 0.06</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Discharge of drilling waste; discharge from metal manufacturing, radiation known as photons and beta radiation.</td>
</tr>
<tr>
<td>2019</td>
<td>Fluoride</td>
<td>0.54</td>
<td>0.15 to 0.54</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>No</td>
<td>Natural occurring in water. It is monitored because it is a good indicator of water treatment effectiveness.</td>
</tr>
<tr>
<td>2019</td>
<td>Chloramines</td>
<td>2.85</td>
<td>4 ppm</td>
<td>No</td>
<td></td>
<td>ppm</td>
<td>No Water additive used to control microbes.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Hardness as CaCO₃</td>
<td>18 to 178 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Dissolved Solids</td>
<td>192 to 266 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sulfate</td>
<td>23.4 to 44.3 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sodium</td>
<td>15.1 to 26.8 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Chloride</td>
<td>19.5 to 35.1 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNREGULATED CONSTITUENTS

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to determine the presence of an unregulated contaminant in drinking water and to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

<table>
<thead>
<tr>
<th>Year</th>
<th>Contaminant</th>
<th>High Level</th>
<th>Level Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Barium</td>
<td>0.06</td>
<td>0.05 to 0.06</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Discharge of drilling waste; discharge from metal manufacturing, radiation known as photons and beta radiation.</td>
</tr>
<tr>
<td>2019</td>
<td>Fluoride</td>
<td>0.54</td>
<td>0.15 to 0.54</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>No</td>
<td>Natural occurring in water. It is monitored because it is a good indicator of water treatment effectiveness.</td>
</tr>
<tr>
<td>2019</td>
<td>Chloramines</td>
<td>2.85</td>
<td>4 ppm</td>
<td>No</td>
<td></td>
<td>ppm</td>
<td>No Water additive used to control microbes.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Hardness as CaCO₃</td>
<td>18 to 178 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Dissolved Solids</td>
<td>192 to 266 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sulfate</td>
<td>23.4 to 44.3 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sodium</td>
<td>15.1 to 26.8 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Chloride</td>
<td>19.5 to 35.1 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESIDUAL DISINFECTION BY-PRODUCTS

The highest level of a disinfectant allowed in drinking water is the MCL. This limit is established to protect public health. The MCL is based on the maximum level of chemical or reaction-product that the EPA believes can be safely added to drinking water under the conditions expected in water mains and in the home. Exceeding the limit for a disinfectant may cause a change in the water taste or odor.

<table>
<thead>
<tr>
<th>Year</th>
<th>Contaminant</th>
<th>High Level</th>
<th>Level Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Barium</td>
<td>0.06</td>
<td>0.05 to 0.06</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Discharge of drilling waste; discharge from metal manufacturing, radiation known as photons and beta radiation.</td>
</tr>
<tr>
<td>2019</td>
<td>Fluoride</td>
<td>0.54</td>
<td>0.15 to 0.54</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>No</td>
<td>Natural occurring in water. It is monitored because it is a good indicator of water treatment effectiveness.</td>
</tr>
<tr>
<td>2019</td>
<td>Chloramines</td>
<td>2.85</td>
<td>4 ppm</td>
<td>No</td>
<td></td>
<td>ppm</td>
<td>No Water additive used to control microbes.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Hardness as CaCO₃</td>
<td>18 to 178 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Total Dissolved Solids</td>
<td>192 to 266 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sulfate</td>
<td>23.4 to 44.3 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sodium</td>
<td>15.1 to 26.8 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Chloride</td>
<td>19.5 to 35.1 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DETECTION IN RAW WATER

As part of an ongoing effort to evaluate potential raw water quality improvements, Tarrant Regional Water District monitors the raw water used to produce drinking water in the City of Hurst. The City of Hurst provides this information because it can be used to improve water treatment processes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Measure</th>
<th>Range of Detects</th>
<th>Unit of Measure</th>
<th>Minimum Reporting Level</th>
<th>MRL</th>
<th>Container of Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>ppt</td>
<td>0.02 to 0.03</td>
<td>0.01 ppm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>ppt</td>
<td>0.03 to 0.06</td>
<td>0.05 ppm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppt</td>
<td>0.05 to 0.1</td>
<td>0.02 ppm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramines</td>
<td>ppm</td>
<td>0.2 to 0.4</td>
<td>0.01 ppm</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPLEMENTARY DATA

For more information on drinking water quality for the City of Hurst, please visit our website at www.cityofhurst.com or contact the City of Hurst Water Quality Management Department at (682) 867-1000.
The tables and figures in this document are designed to provide clear, comprehensive information on various aspects of drinking water quality. Here are the key points extracted from the given text:

2019 Drinking Water Quality Report

These charts list all of the federally regulated or monitored constituents that have been found in your drinking water for the 2019 calendar year. The U.S. EPA requires water systems to test for up to 97 constituents.

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Year</th>
<th>Contaminant</th>
<th>High Level</th>
<th>Level Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Arsenic</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.01-0.03</td>
<td>Mg/L</td>
<td>No</td>
<td>Erosion of natural deposits, fires, natural gas, radioactive materials, water treatment.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Barium</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.02-0.04 >2</td>
<td>Mg/L</td>
<td>No</td>
<td>Discharge from metal refineries; erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Fluoride</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.46-2.0 >4</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of natural deposits; water additives which promote strong teeth.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Nitrate</td>
<td>Not Detected</td>
<td>NA</td>
<td>1.2</td>
<td>ppm</td>
<td>No</td>
<td>Natural fertilizer use and industrial processes.</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Sodium</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.1-1.5</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of natural deposits.</td>
<td></td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>Year</th>
<th>Contaminant</th>
<th>High Level</th>
<th>Level Range</th>
<th>MCLG</th>
<th>MCL</th>
<th>Unit of Measure</th>
<th>Violation</th>
<th>Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Nitrite (measured as Nirtogen)</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.02</td>
<td>ppm</td>
<td>No</td>
<td>Naturally present in the environment.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Lead</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.002-0.015</td>
<td>ppb</td>
<td>No</td>
<td>Corrosion of household plumbing systems.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Copper</td>
<td>Not Detected</td>
<td>NA</td>
<td>0.002-0.005</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.</td>
<td></td>
</tr>
</tbody>
</table>

Disinfection and Disinfection By-Products

<table>
<thead>
<tr>
<th>Substance</th>
<th>Sources of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochloroacetic Acid</td>
<td>Byproducts of drinking water disinfection; not regulated individually; included in Total Trihalomethanes</td>
</tr>
<tr>
<td>Chlorodibromoacetic Acid</td>
<td>Byproducts of drinking water disinfection; not regulated individually; included in Total Trihalomethanes</td>
</tr>
<tr>
<td>Trihalomethanes</td>
<td>Byproduct of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Sediment Stains

Sediment stains are detected in the water distribution system. The table includes all of the compounds that comprise each sediment stain group. These stains are an indicator of the effectiveness of the water treatment process.

Byproducts of Disinfecting Water Systems

- **Byproducts of chlorination**:
 - Trihalomethanes
 - Haloacetic acids
 - Haloacetonitriles

Sediment Stains

- **Total Trihalomethanes**:
 - Byproduct of drinking water disinfection
 - Includes all trihalomethanes

- **Total Haloacetic Acids**:
 - Byproduct of drinking water disinfection
 - Includes all haloacetic acids

- **Total Haloacetonitriles**:
 - Not regulated individually
 - Included in Total Trihalomethanes

Notes

- All alerts are Level 1 notifications, which are considered to be of potential regulatory concern. Level 2 notifications are considered to be of potential public health concern. Level 3 notifications are considered to be of potential economic or other requirements concern. Level 4 notifications are considered to be of potential regulatory concern.

- **Water Supply System**:
 - The water supply system is the collection of facilities, equipment, and processes used to collect, treat, distribute, and monitor water for public health and environmental protection.

- **Month of the Year**:
 - The month of the year is used to indicate the month in which the sample was taken.

- **Year**:
 - The year is used to indicate the calendar year in which the sample was taken.

- **Category**:
 - The category is used to indicate the type of water sample (e.g., drinking water, wastewater).

- **Quality Assurance/Quality Control**:
 - The quality assurance/quality control measures used to ensure the accuracy and reliability of the data.

- **Sample Size**:
 - The sample size is used to indicate the number of samples collected.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.

- **Sample Number**:
 - The sample number is used to identify the specific sample within the collection.

- **Sample Type**:
 - The sample type is used to indicate the type of sample collected (e.g., tap water, well water).

- **Sample Collection**:
 - The sample collection date is used to indicate the date on which the sample was collected.

- **Sample Results**:
 - The sample results are used to indicate the concentration of the contaminant in the sample.

- **Report Date**:
 - The report date is used to indicate the date on which the report was generated.

- **Action**:
 - The action is used to indicate the recommended action to be taken in response to the results of the sample.
All water may contain contaminants

When drinking water meets federal standards, there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Water Sources

The sources of drinking water (both tap water and bottled water) include: rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, and in some cases, radioactive material can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock.

Also from gas stations, urban storm water runoff and septic systems. Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Taste and Odor Problems

Many constituents (such as calcium, sodium or iron), which are often found in drinking water, can cause taste, color and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not by the EPA. These constituents are not causes of health concerns. Therefore, secondary’s are not required to be reported in this document, but they may greatly affect the appearance and taste of your water.

The City of Hurst, in order to maintain water clarity and quality as well as safe and adequate flows for fire protection mains, will flush fire hydrants throughout the city monthly. Fire hydrant flushing is an important tool in maintaining good water quality and fire fighting capability and is a year round practice by all cities.

Information about source water assessments

The Texas Commission on Environmental Quality (TCEQ) completed an assessment of our source water and the results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for our water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts for our system, you may contact the Director of Utilities at 817-788-7206.

For more information about your sources of water, please refer to the Source Water Assessment View available at the following site: https://gisweb.tceq.texas.gov/IEW/Controller/index.jsp?wtrsrc=.

Further details about sources and source water assessments are available in Drinking Water Watch at the following site: http://dww2.tceq.texas.gov/DWW/.

Water Loss as Reported to TWDB

In the Water Loss Audit as reported to the Texas Water Development Board for the time period Jan-Dec 2019, our system reported:

Apparent Losses Normalized of 3.58 gallons per connection, per day. Real Losses Normalized as 0.45 gallons lost per connection, per day. The city of Hurst infrastructure leak index (or LSI) was reported at 0.04 and our overall Total Loss percentage was 1.39%.

If you have any questions about the water loss audit, please call the Director of Utilities at 817-788-7206.

Water IQ - Know Your Water

Water IQ is a public awareness program that educates Texans on the importance of water conservation. Research shows that the more Texans understand where their water comes from, the more likely they are to take an active role in conserving it. As Texans conserve our state’s water resources, they are helping ensure that the state has enough water now and in the future.

Water IQ uses an easy-to-identify brand and hosts a variety of materials. Brochures and other educational content featuring tips and information on home indoor and outdoor water conservation, as well as agricultural and industrial conservation are available. These publications are free in limited quantities, and additional copies may be ordered for a nominal fee at www.wateriq.org.

Special Notice

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components in your home. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

En Español

Este reporte incluye información importante sobre el agua que proporciona tu agua. El análisis se basa en la información de los últimos test de la EPA (EPA) de los consumidores. El reporte se ofrece en español, francés, y chinés. Para más información, comunícate con el departamento de agua al 817-788-7076 para hablar con uno de nuestros hablantes en español.

For more information and tips on conserving water, please visit www.hursttx.gov/waterconservation.

In the Water Loss Audit as reported to the Texas Water Development Board for the time period Jan-Dec 2019, our system reported:

Apparent Losses Normalized of 3.58 gallons per connection, per day. Real Losses Normalized as 0.45 gallons lost per connection, per day. The City of Hurst Infrastructure Leak Index (or LSI) was reported at 0.04 and our overall Total Loss percentage was 1.39%.

If you have any questions about the water loss audit, please call the Director of Utilities at 817-788-7206.

Water IQ - Know Your Water

Water IQ is a public awareness program that educates Texans on the importance of water conservation. Research shows that the more Texans understand where their water comes from, the more likely they are to take an active role in conserving it. As Texans conserve our state’s water resources, they are helping ensure that the state has enough water now and in the future.

Water IQ uses an easy-to-identify brand and hosts a variety of materials. Brochures and other educational content featuring tips and information on home indoor and outdoor water conservation, as well as agricultural and industrial conservation are available. These publications are free in limited quantities, and additional copies may be ordered for a nominal fee at www.wateriq.org.

Special Notice

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components in your home. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

En Español

Este reporte incluye información importante sobre el agua para tomar. Si tiene preguntas o discusiones sobre este reporte en español, haga de llamada al tel. 817-788-7076 para hablar con uno de nuestros hablantes en español.

For more information and tips on conserving water, please visit www.hursttx.gov/waterconservation.